III-2-7. F distribution

F distribution is probability distribution of ration of two variance. T distribution is combination of normal distribution and χ^{2} distribution. F distribution is product of 2 χ^{2} distributions. The formulization process is basically similar as the process used in normal distribution, χ^{2} distribution and t distribution.

There are two variances $\left(z_{1}, z_{2}\right)$ which distribute in χ^{2} distribution. The variance is $\frac{z_{1}}{n_{1}}$ and $\frac{z_{2}}{n_{2}}$. n is degree of freedom, not number of data). We consider the ratio of two variances

$$
\begin{gathered}
f=\frac{\frac{z_{1}}{n_{1}}}{\frac{z_{2}}{n_{2}}} \\
\mathrm{P}\left(z_{1}\right)=\frac{z_{1}^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}}{2}} \Gamma\left(\frac{n_{1}}{2}\right)} e^{\frac{-z_{1}}{2}} \\
\mathrm{P}\left(z_{2}\right)=\frac{z_{2}^{\frac{n_{2}}{2}-1}}{2^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{2}}{2}\right)} e^{\frac{-z_{2}}{2}} \\
\mathrm{~F}(f)=\mathrm{P}\left(z_{1}\right) \mathrm{P}\left(z_{2}\right)
\end{gathered}
$$

We have to consider orthogonal plane of z_{1} and z_{2}.
See III-3-3. Jacobian, III-3-4. Polar coordinate, III-3-5. Multiple integral

$$
\begin{gathered}
f=\frac{z_{1}}{n_{1}} \frac{n_{2}}{z_{2}} \\
z_{1} n_{2}=f z \\
z_{2} n_{1}=z \\
0 \leq \mathrm{z}_{1} \leq \infty, 0 \leq z_{2} \leq \infty, 0 \leq \mathrm{f} \leq \infty, 0 \leq \mathrm{z} \leq \infty \\
\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{P}(\mathrm{z}) d z d f=1 \\
\frac{d z_{1}}{d f}=\frac{\mathrm{z}}{n_{2}} \\
\frac{d z_{1}}{d z}=\frac{f}{n_{2}} \\
\frac{d z_{2}}{d f}=0
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d z_{2}}{d z}=\frac{1}{n_{1}} \\
& J\left(z_{1}, z_{2} / f, z\right)=\left[\begin{array}{ll}
\frac{d z_{1}}{d f} & \frac{d z_{1}}{d z} \\
\frac{d z_{2}}{d f} & \frac{d z_{2}}{d z}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\mathrm{z}}{n_{2}} & \frac{\mathrm{f}}{n_{2}} \\
0 & \frac{1}{n_{1}}
\end{array}\right]=\frac{z}{n_{1} n_{2}} \\
& \int_{0}^{\infty} \int_{0}^{\infty} \mathrm{P}(\mathrm{z}) d z d \mathrm{f}=\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{P}\left(z_{1}\right) \mathrm{P}\left(z_{2}\right) J\left(z_{1}, z_{2} / f, z\right) d z d \mathrm{f}=1 \\
& \mathrm{~F}(f)=\frac{d\left(\int_{0}^{f} \mathrm{~F}(f) d f\right)}{d f} \\
& \mathrm{~F}(f)=\int_{0}^{\infty} \frac{z_{1}^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}}{2}} \Gamma\left(\frac{n_{1}}{2}\right)} e^{\frac{-z_{1}}{2}} \frac{z_{2}^{\frac{n_{2}}{2}-1}}{2^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{2}}{2}\right)} e^{\frac{-z_{2}}{2}} \frac{z}{n_{1} n_{2}} d z \\
& =\int_{0}^{\infty} \frac{\left(\frac{f z}{n_{2}}\right)^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}}{2}} \Gamma\left(\frac{n_{1}}{2}\right)} e^{-\frac{-\left(\frac{f z}{n_{2}}\right)}{2}} \frac{\left(\frac{Z}{n_{1}}\right)^{\frac{n_{2}}{2}-1}}{2^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{2}}{2}\right)} e^{-\frac{-\left(\frac{z}{n_{1}}\right)}{2}} \frac{z}{n_{1} n_{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) 2^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty}\left(\frac{z}{n_{2}}\right)^{\frac{n_{1}}{2}-1}\left(\frac{z}{n_{1}}\right)^{\frac{n_{2}}{2}-1} e^{\frac{-\left(\frac{f z}{n_{2}}\right)}{2}} e^{\frac{-\left(\frac{Z}{n_{1}}\right)}{2}} \frac{z}{n_{1} n_{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty}\left(\frac{z}{n_{2}}\right)^{\frac{n_{1}}{2}-1} \frac{1}{n_{2}}\left(\frac{z}{n_{1}}\right)^{\frac{n_{2}}{2}-1} \frac{1}{n_{1}} z e^{\frac{-\left(\frac{f z}{n_{2}}+\frac{z}{n_{1}}\right)}{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty} \frac{z^{\frac{n_{1}}{2}-1}}{n_{2}^{\frac{n_{1}}{2}}} \frac{n_{2}^{2}-1}{n_{1}^{\frac{n_{2}}{2}}} z e^{\frac{-\left(\frac{f z}{n_{2}}+\frac{z}{n_{1}}\right)}{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2} \frac{n_{1}}{2} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty} z^{\frac{n_{1}+n_{2}}{2}-2} z e^{\frac{-\left(\frac{f z}{n_{2}}+\frac{z}{n_{1}}\right)}{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2} \frac{n}{1}_{2}^{2} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty} z^{\frac{n_{1}+n_{2}}{2}-1} e^{-\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right) \frac{Z}{2}} d z \\
& \left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right) \frac{Z}{2}=\mathrm{w}
\end{aligned}
$$

$$
\begin{aligned}
& z=\frac{2}{\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)} \mathrm{w} \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)^{\infty}} \int_{0}^{\infty} z^{\frac{n_{1}+n_{2}}{2}-1} e^{-\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right) \frac{Z}{2}} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty}\left\{\frac{2}{\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)} \mathrm{w}\right\}^{\frac{n_{1}+n_{2}}{2}-1} e^{-w} \frac{2}{\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)} d w \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2}{ }^{\frac{n_{1}}{2}} n_{1} \frac{n_{2}}{2} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \int_{0}^{\infty}\left\{\frac{2}{\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)}\right\}^{\frac{n_{1}+n_{2}}{2}} \mathrm{w}^{\frac{n_{1}+n_{2}}{2}-1} e^{-w} d z \\
& =\frac{2^{\frac{n_{1}+n_{2}}{2}} \cdot f^{\frac{n_{1}}{2}-1}}{2^{\frac{n_{1}+n_{2}}{2}} n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)^{\infty}} \int_{0}^{\infty} \frac{1}{\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)^{\frac{n_{1}+n_{2}}{2}}} \mathrm{w}^{\frac{n_{1}+n_{2}}{2}-1} e^{-w} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1}}{n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)\left(\frac{\mathrm{f}}{n_{2}}+\frac{1}{n_{1}}\right)^{\frac{n_{1}+n_{2}}{2}}} \int_{0}^{\infty} \mathrm{w}^{\frac{n_{1}+n_{2}}{2}-1} e^{-w} d z \\
& =\frac{f^{\frac{n_{1}}{2}-1} \Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)\left(\frac{\mathrm{f}}{n_{2}}+\frac{1}{n_{1}}\right)^{\frac{n_{1}+n_{2}}{2}}} \\
& \because \int_{0}^{\infty} \mathrm{w}^{\frac{n_{1}+n_{2}}{2}-1} e^{-w} d z=\Gamma\left(\frac{n_{1}+n_{2}}{2}\right) \\
& =\frac{f^{\frac{n_{1}}{2}-1} \Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{n_{2}^{\frac{n_{1}}{2}} n_{1}^{\frac{n_{2}}{2}}\left(\frac{f}{n_{2}}+\frac{1}{n_{1}}\right)^{\frac{n_{1}+n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \\
& =\frac{\mathrm{f}^{\frac{n_{1}}{2}-1} \Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{n_{2}^{\frac{n_{1}}{2}} n_{1} \frac{n_{2}}{2} \frac{\left(n_{1} f+n_{2}\right)^{\frac{n_{1}+n_{2}}{2}}}{\left(n_{1} n_{2}\right)^{\frac{n_{1}+n_{2}}{2}}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)} \\
& =\frac{n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} \cdot f^{\frac{n_{1}}{2}-1} \Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{\left(n_{1} f+n_{2}\right)^{\frac{n_{1}+n_{2}}{2}} \Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}} \cdot f^{\frac{n_{1}}{2}-1}}{\left(n_{1} f+n_{2}\right)^{\frac{n_{1}+n_{2}}{2}} \beta\left(n_{1}, n_{2}\right)} \\
\because \frac{\Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{\Gamma\left(\frac{n_{1}}{2}\right) \Gamma\left(\frac{n_{2}}{2}\right)}=\frac{1}{\beta\left(n_{1}, n_{2}\right)} \\
P(f)=\frac{n_{1}^{\frac{n_{1}}{2}} n_{2}^{\frac{n_{2}}{2}}}{\beta\left(n_{1}, n_{2}\right)} \cdot \frac{f^{\frac{n_{1}}{2}-1}}{\left(n_{1} f+n_{2}\right)^{\frac{n_{1}+n_{2}}{2}}}
\end{gathered}
$$

Formula 25.

